Läs upp

Cookies

Den här webbplatsen använder så kallade cookies. Cookies är små textfiler som lagras i din dator och sparar information om olika val som du gjort på en webbsida – t ex språk, version och statistik – för att du inte ska behöva göra dessa val en gång till. Tekniken är etablerad sedan många år tillbaka och används idag på väldigt många webbplatser på Internet.

Du kan när som helst ändra cookieinställningarna för denna webbplats.

FASS logotyp
Receptbelagd

Peka på symbolerna och beteckningarna till vänster för en förklaring.

Kontakt

Sök apotek med läkemedlet i lager

Sök lagerstatus

Rocephalin® med lidokain

Roche

Pulver och vätska till injektionsvätska, lösning 1 g
(Pulver: vitt till gulorange kristallint. Lösning: klar färglös.)

Antibiotikum av cefalosporintyp, betalaktamasstabilt

Aktiva substanser:
ATC-kod: J01DD54
Utbytbarhet: Ej utbytbar
Läkemedel från Roche omfattas av Läkemedelsförsäkringen.
  • Vad är miljöinformation?

Miljöinformation

Miljöpåverkan (Läs mer om miljöpåverkan)

Ceftriaxon

Miljörisk: Användning av ceftriaxon har bedömts medföra försumbar risk för miljöpåverkan.
Nedbrytning: Ceftriaxon är potentiellt persistent.
Bioackumulering: Ceftriaxon har låg potential att bioackumuleras.


Läs mer

Detaljerad miljöinformation

Identification and characterisation

Chemical name: Ceftriaxone disodium salt hemi(heptahydrate)

CAS number: 104376-79-6 [1]

Molecular weight: 661.6 [1]

Remark: -

Brand name: Rocephalin® med lidokain [1]


Chemical name: Ceftriaxone (active substance)

CAS number: 73384-59-5

Molecular weight: 554.5872


Physico-chemical properties

Aqueous solubility: 470 g/l (22 °C) [1]

Dissociation constant, pKa: 3, approximate value [3]

Melting point: >155 °C (with decomposition) [1]

Vapour pressure: ND

Boiling point: ND

KH: <1*E–30 atm*m3/mol QSAR

QSAR = QSAR-modelled (EPISuite, SPARC, ACD Solaris)


Predicted Environmental Concentration (PEC)

PEC is calculated according to the formula:

PEC (μg/L) = (A x 1'000'000'000 x (100-R)) / (365 x P x V x D x 100) = 1.5 x 10-6 x A x (100 - R) = 0.011 μg/L


Where: 90.8649 (total sold amount API in Sweden year 2017, data from IQVIA)

A Sold quantity = 76.1677 kg/y calculated data for the active ingredient Ceftriaxon

R Removal rate = 0 % Defaul value [2]

P Population of Sweden = 9000000

V Volume of Wastewater = 200 l/day Default value [2]

D Factor for Dilution = 10 Default value [2]


Predicted No Effect Concentration (PNEC)

Ecotoxicological Studies

Green alga (Raphidocelis subcapitata): [5, 13]

ErC50 72 h (growth rate) >100 mg/l (OECD 201)

EbC50 72 h (biomass) >100 mg/l (OECD 201)

NOEC 72 h (growth rate + biomass) = 100 mg/l (OECD 201)


Cyanobacteria (Synechococcus leopoliensis): [11, 13]

ErC50 72 h (growth rate) = 0.586 mg/l active substance (OECD 201)

ErC10 72 h (growth rate) = 0.294 mg/l active substance (OECD 201)

EyC50 72 h (yield) = 0.324 mg/l active substance (OECD 201)

EyC10 72 h (yield) = 0.173 mg/l active substance (OECD 201)

NOEC 72 h (growth rate + yield) = 0.1 mg/l active substance (OECD 201)


Water-flea (Daphnia magna): [6]

EC50 48 h (immobilization) > 100 mg/l (OECD 202)

NOEC 48 h (immobilization) = 100 mg/l (OECD 202)


Daphnia magna Reproduction: [12, 13]

NOEC 21 d (reproductive output) = 92.0 mg/l active substance (OECD 211)

NOEC 21 d (intrinsic rate of population increase) = 28.5 mg/l active substanc(OECD 211)

NOEC 21 d (overall) = 28.5 mg/l active substance (OECD 211)


Respiration inhibition test: [7]

NOEC 3 h (respiration inhibition) = 10 mg/l (OECD 209) [7]


Micro-organisms: [8]

28 d LOEC (toxicity control, CFU) = 0.005 mg/l (OECD 301 D)


PNEC Derivation

The PNEC is based on the following data:

PNEC (mg/l) = lowest NOEC/10, where 10 is the assessment factor used. A NOEC of 0.1 mg/l (100 μg/l) for Cyanobacteria has been used for this calculation. Fish has been considered not to be the relevant species, due to the low acute toxicity. This is a joint assessment performed by the AMR Industry Alliance. [13]


PNEC = 100 / 10 = 10 μg/l active substance


Environmental Risk Classification (PEC/PNEC Ratio)

PEC Predicted Environmental Concentration = 0.011 μg/L

PNEC Predicted No Effect Concentration = 10 μg/L

Ratio PEC/PNEC = 0.001


PEC/PNEC = 0.011/10 = 0.001 for Ceftriaxone active substance, which justifies the phrase 'Use of Ceftriaxone disodium has been considered to result in insignificant environmental risk.'


Degradation

Biotic Degradation

Ready biodegradability: [8]

3% after 28 days of incubation BOD/ThOD (OECD 301 D)


Inherent biodegradability: [7]

0% after 28 days of incubation BOD/ThOD (OECD 302 C)


Other degradation information: ND


Abiotic Degradation

Photodegradation:

= 4 d (20 °C, light) [3]


Hydrolysis:

= 61 d (4 °C, in the dark) [3]

= 11 d (15 °C, in the dark) [3]

= 5 d (20 °C, in the dark) [3]

(20°C, buffer of ionic strength 0.6) = 8.9 h at pH 5.0, 7 d at pH 5.6, 18 d at pH 6.2, 36 d at pH 6.8, 32 d at pH 7.4, 16 d at pH 8.0; hydrolysis even faster at higher ionic

strength, i.e., faster in seawater or sewage than in 'clean' water. [9]


Ceftriaxone disodium salt hemi(heptahydrate) is neither readily, nor inherently biodegradable. This justifies the phrase 'Ceftriaxone disodium salt hemi(heptahydrate) is potentially persistent.'


Bioaccumulation/Adsorption

logPOW 0.025 pH 2.0 experimental, method unknown [1]

log D -1.2 pH 7.4 experimental, method unknown [10]

KOC ≤2713 pH-sensitive, QSAR; low adsorption based on logPow

BCF <10 QSAR


Ceftriaxone disodium has low potential for bioaccumulation.


Excretion/metabolism

Ceftriaxone is metabolised in part (unquantified) to inactive compounds. [4]


PBT/vPvB Assessment

P: Freshwater half-life 36 d, based on hydrolysis (worst-case at 20 °C) [9]

Sediment half-life ND

Persistence criteria fulfilled? not P


B: BCF (experimental)

alternatively, base or acid? a

alternatively, logDOW(p H 7) ≤0.5 , log Pow, Log D [1, 10]

Bioaccumulation criteria fulfilled? not B


T: chronic NOEC < 0.01 mg/l? ND

CMR substance? n not CMR [1]

Endocrine-disrupting effects? n ND

T criteria fulfilled? potentially T


PBT Assessment: not PBT


References

1. F. Hoffmann-La Roche Ltd (2016): Safety Data Sheet for Ceftriaxone disodium, 20.09.2017; https://www.roche.com/sustainability/what_we_do/for_communities_and_environment/environment/safety_data_sheets-row.htm

2. ECHA, European Chemicals Agency. 2008 Guidance on information requirements and chemical safety

assessment. http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm

3. Kümmerer K (2003): Eintrag von Antibiotika in die aquatische Umwelt; Anhang "Stoffdossier". Abschlussbericht, F&E-Vorhaben 298 63 722, Freiburg; www.iuk-freiburg.de/umweltforschung/index.htm.

4. Martindale (2005): Martindale, the complete drug reference, electronic version, online; 2005.

5. Study Report: NOTOX Project no. 180091: Fresh water algal growth inhibition test with Rocephin, December 1996.

6. Study Report: NOTOX Project no. 180012: Acute toxicity study in Daphnia magna with Rocephin, January 2008.

7. Study Report: Roche Project: Oekotoxikologische Beurteilung BWL, August 1983.

8. Alexy R, Kümpel T, Kümmerer K (2004): Assessment of degradation of 18 antibiotics in the Closed Bottle test. Chemosphere 57: 505–512.

9. Martinez-Pacheco R, Vila-Jato JL, Gómez-Amoza JL (1987): Effect of different factors on stability of ceftriaxone in solution. Il Farmaco 42(5): 131–137.

10. Zhu C, Jiang L, Chen T–M, Hwang K–K (2002): A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur J Med Chem 37: 399–407.

11. Study Report: Arcadis Project no. A18-00168: Ceftriaxone disodium salt hemi(heptahydrate). Cyanobacteria growth inhibition test with Synechococcus leopoliensis, September 2018.

12. Study Report: Arcadis Project no. A18-00169: Ceftriaxone disodium salt hemi(heptahydrate). Daphnia magna Reproduction Test, September 2018.

13. AMR Industry Alliance Antibiotic Discharge Targets. List of Predicted No-Effect Concentrations (PNECs). Version: 21 September 2018. https://www.amrindustryalliance.org/wp content/uploads/2018/09/AMR_Industry_Alliance_List-of-Predicted-No Effect Concentrations-PNECs.pdf



Lidokain

Miljörisk: Användning av lidokain har bedömts medföra försumbar risk för miljöpåverkan.
Nedbrytning: Lidokain är potentiellt persistent.
Bioackumulering: Lidokain har låg potential att bioackumuleras.


Läs mer

Detaljerad miljöinformation

The assessment for Lidocaine is based on the following entries of sales data from IQVIA - kg consumption/2017:


Substance

CAS no.

M

kg (2017)

Lidocaine

137-58-6

234.3408

1542.7976

Lidocaine hydrochloride (water free)

73-78-9

270.8017

11.5451

Lidocaine hydrochloride (monohydrat)

6108-05-0

288.8165

816.0772

Lidocaine (total)



2214.9394


Identification and characterisation

Chemical name: Lidocaine

CAS number: 137-58-6

Molecular weight: 234.3408 [1]

Remark: -

Brand name: Rocephalin® med lidokain [1]


Physico-chemical properties

Water solubility:

4000 mg/l as Lidocaine base [10]

680000 mg/l as Lidocaine hydrochloride monohydrate [10]


Dissociation constant, pKa:

8.05 (in 170 mM NaCl at 25 °C, with no added buffers) [9]

7.84 (25 °C) [10]


Melting point:

68–69 °C as Lidocaine base [10]

76–79 °C as Lidocaine hydrochloride monohydrate [10]


Vapour pressure: ND

Boiling point: ND

KH: 8.77*E–09 atm*m3/mol QSAR


QSAR = QSAR-modelled (EPISuite, SPARC, ACD Solaris)


Predicted Environmental Concentration (PEC)

PEC is calculated according to the formula:

PEC (μg/L) = (A x 1'000'000'000 x (100-R)) / (365 x P x V x D x 100) = 1.5 x 10-6 x A x (100 - R) = 0.332 μg/L


Where:

A Sold quantity = 2214.9394 kg/y calculaed sales data for Lidocaine (total) (total sold amount API in Sweden year 2017, data from IQVIA)

R Removal rate = 0 % Default value [2]

P Population of Sweden = 9000000

V Volume of Wastewater = 200 l/day Default value [2]

D Factor for Dilution = 10 Default value [2]


Predicted No Effect Concentration (PNEC)

Ecotoxicological Studies

Green alga (Scenedesmus vacuolatus): [4]

ErC50 24 h (growth rate) at pH 6.5 = 135 mg/l (no standard method)

ErC50 24 h (growth rate) at pH 7.5 = 161 mg/l (no standard method)

ErC50 24 h (growth rate) at pH 8.5 = 142 mg/l (no standard method)

ErC50 24 h (growth rate) at pH 9.0 = 128 mg/l (no standard method)

ErC50 24 h (growth rate) at pH 10.0 = 108 mg/l (no standard method)


(Algae were maintained as batch cultures in Talaquil medium at 25 °C under photosynthetically active radiation (PAR) of 170 ± 20μEm−2 s−1. The buffer constitution of the medium was increased to 20 mM to reach pH-stability over the test period. The buffer constitution was varied with pH as follows: 20mM MES (2-(N morpholino)ethanesulfonic acid, CAS 4432-31-9) was used for pH 6.5, 20 mM MOPS (3-(Nmorpholino) propanesulfonic acid, CAS 1132-61-2) for pH 7.5, 20 mM HEPPS (4 (2-hydroxyethyl)-1-piperazinepropanesulfonic acid, CAS 16052-06-5) for pH 8.5, 20 mM CHES (2-(cyclohexylamino)ethanesulfonic acid, CAS 103-47-9) for pH 9.0, and 20 mM CAPS (3- (cyclohexylamino)-1-propanesulfonic acid, CAS 1135-40-6) for pH 10.0. Algae were grown in medium at the different pH values for at least 3 days before the experiment to allow for adaptation. The test was conducted using OD-readings for the determination of the growth rate μ during 24 h.) [4]


Water-flea (Daphnia magna): cited in: [5]

EC50 48 h (immobilization) = 112 mg/l (OECD 202)


Thamnocephalus platyurus (anostracan crustacean) [8]

LC50 24 h (mortality) = 81.7 mg/l (Thamnotoxkit microbiotest)


Zebra fish (Danio rerio): cited in: [5]

LC50 96 h (mortality) = 106 mg/l (OECD 203)


Zebra fish (Danio rerio) Embryo Test: [11]

LC50 24 h (mortality) = 23 mg/l (OECD 236, adapted)


Micro-organisms:

ND


PNEC Derivation

The PNEC is based on the following data:

PNEC (mg/l) = lowest LC50/1000, where 1000 is the assessment factor used. An LC50 of 23000 μg/l in the Zebra fish (Danio rerio) Embryo Test has been used for this calculation.

PNEC = 23000 / 1000 = 23 μg/l


Environmental Risk Classification (PEC/PNEC Ratio)

PEC Predicted Environmental Concentration = 0.332 μg/L

PNEC Predicted No Effect Concentration = 23 μg/L

Ratio PEC/PNEC = 0.014


PEC/PNEC = 0.332/23 = 0.014 for Lidocaine which justifies the phrase 'Use of Lidocaine has been considered to result in insignificant environmental risk.'


Degradation

Biotic Degradation

Ready biodegradability: ND

Inherent biodegradability: ND


Other degradation information: [6]

Degradation in surface water = 92 d (laboratory, 23 °C, in the dark), = 110 d (field, 2-28 °C, in the dark)


Abiotic Degradation

Photodegradation: = 0.4 d (laboratory, light), = 1.3 d (field, light) [6]

Hydrolysis: ND


Lidocaine is neither readily, nor inherently biodegradable. This justifies the phrase 'Lidocaine is potentially persistent.'


Bioaccumulation/Adsorption

logPOW 1.66 QSAR [3]

logPOW 2.44 method unknown, cited in: [3]

logDOW 1.63 (pH 7.4, 25 °C) [9]

logDOW 1.66 (phosphate buffer, pH 7.4, 25 °C) [10]

KOC ≤420 QSAR [3]

BCF <20 QSAR [3]


Lidocaine has low potential for bioaccumulation (log DOW <4 at pH 7.4).


Excretion/metabolism

Lidocaine is metabolized chiefly by the liver. Its major degradative pathway is conversion to monoethylglycinexylidide by oxidative N-deethylation followed by hydrolysis to 2,6-xylidine. Further conversion of 2,6-xylidine to 4-hydroxy-2,6-xylidine appears to occur in man, since the latter compound excreted in urine over a 24-hour period has accounted for over 70% of an orally administered dose of lidocaine. No more than 10% of the dose is excreted as parent lidocaine. [7]


References

1. F. Hoffmann-La Roche Ltd (2015): Safety Data Sheet for Lidocaine, 15.12.2015; https://www.roche.com/sustainability/what_we_do/for_communities_and_environment/environment/safety_data_sheets-row.htm

2. ECHA, European Chemicals Agency. 2008 Guidance on information requirements and chemical safety assessment. http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm

3. US Environmental Protection Agency, EPI (Estimation Programs Interface) Suite™ v4.11.

4. Neuwoehner J, Escher BI. 2011. The pH-dependent toxicity of basic pharmaceuticals in the green algae. Aquatic Toxicology 101:266-275.

5. Landesumweltamt Brandenburg (LUA). 2002. Ökotoxikologische Bewertung von Humanarzneimitteln in aquatischen Ökosystemen, Band 39, Studien und Tagungsberichte (ISSN 0948-0838).

6. Rúa-Gómez PC, Püttmann W. 2013. Degradation of lidocaine, tramadol, venlafaxine and the metabolites O-desmethyltramadol and O-desmethylvenlafaxine in surface waters. Chemosphere 90:1952–1959.

7. Collinsworth KA, Kalman SM, Harrison DC. 1974. The clinical pharmacology of lidocaine as an antiarrhythymic drug. Circulation. 50(6):1217-30.

8. Nałecz-Jawecki G, Persoone G. 2006. Toxicity of selected pharmaceuticals to the anostracan crustacean Thamnocephalus platyurus: comparison of sublethal and lethal effect levels with the 1h Rapidtoxkit and the 24h Thamnotoxkit microbiotests. Environ Sci Pollut Res Int. 13(1):22-7.

9. Strichartz GR, Sanchez V, Arthur GR, Chafetz R, Martin D. 1990. Fundamental properties of local anesthetics. II. Measured octanol:buffer partition coefficients and pKa values of clinically used drugs. Anesth Analg. 71(2):158-70.

10. Gröningsson K, Lindgren J-E, Lundberg E, Sandberg R, Wahlén A. 1985. Lidocaine Base and Hydrochloride. Analytical Profiles of Drug Substances. 14:207-243.

11. Lomba L, Ribate MP, Zuriaga E, García CB, Giner B. 2019. Acute and subacute effects of drugs in embryos of Danio rerio . QSAR grouping and modelling. Ecotoxicol Environ Saf. 172:232-239.