

# **Epivir**<sup>®</sup>



# GlaxoSmithKline

Oral lösning 10 mg/ml (klar, färglös till svagt gul lösning, jordgubbs- och banansmak)

Antiviralt medel

#### Aktiv substans:

Lamivudin

### ATC-kod:

J05AF05

Läkemedel från GlaxoSmithKline omfattas av Läkemedelsförsäkringen.

# Miljöpåverkan

# Lamivudin

Miljörisk: Användning av lamivudin har bedömts medföra försumbar risk för miljöpåverkan.

Nedbrytning: Lamivudin bryts ned i miljön.

Bioackumulering: Lamivudin har låg potential att bioackumuleras.

# Detaljerad miljöinformation

### **Environmental Risk Classification**

## Predicted Environmental Concentration (PEC)

PEC is calculated according to the following formula:

PEC (
$$\mu$$
g/L) = (A\*10<sup>9</sup>\*(100-R)/(365\*P\*V\*D\*100) = 1.37\*10<sup>-6</sup> \*A(100-R)

 $PEC = 0.028 \mu g/L$ 

#### Where:

A = 205.36 kg (total sold amount API in Sweden year 2020, data from IQVIA).

R = 0% removal rate (conservatively, it has been assumed there is no loss by adsorption to sludge particles, by volatilization, hydrolysis or biodegradation)

 $P = number of inhabitants in Sweden = 10*10^6$ 

V (L/day) = volume of wastewater per capita and day = 200 (ECHA default) (Reference 1)

D = factor for dilution of waste water by surface water flow = 10 (ECHA default) (Reference 1)

# Predicted No Effect Concentration (PNEC) Ecotoxicological studies

Green Algae (Selenastrum caprocornutum): IC50 72h (growth) > 96,900  $\mu$ g/L (OECD 201) (Reference 7) NOEC > 96,900  $\mu$ g/L

Water flea (Daphnia magna):

Acute toxicity

EC50 48 h (immobility) > 1,000,000  $\mu$ g/L (OECD 202) (Reference 5) NOEC > 1,000,000  $\mu$ g/L

Water flea (Ceriodaphnia dubia):

Chronic toxicity

EC50 7 days (reproduction) > 100,000  $\mu$ g/L (EPA 1002) (Reference 10)

 $NOEC = 100,000 \mu g/L$ 

Water flea (Daphnia magna):

Chronic toxicity

EC50 21 days (reproduction) > 100,000  $\mu$ g/L (OECD 211)

(Reference 12)

 $NOEC = 100,000 \mu g/L$ 

Rainbow Trout (Juvenilee Oncorhyncus mykiss):

Acute toxicity

LC50 96 h (lethality) > 97,700  $\mu$ g/L (OECD 203) (Reference 8)

 $NOEC = 97,700 \mu g/L$ 

Fathead Minnow (Pimephales promelas):

Chronic toxicity

LC50 96 h (lethality) > 10,000  $\mu$ g/L (OECD 210) (Reference 13)

 $NOEC = 10,000 \mu g/L$ 

Other ecotoxicity data:

Microorganisms in activated sludge

EC50 3 hours (Inhibition) > 1,000,000  $\mu$ g/L (OECD 209) (Reference 11)

 $NOEC = 1,000,000 \mu g/L$ 

Chironomid (Chironomus riparius)

NOEC 28 days (development) =  $100,000 \mu g/kg$  (OECD 218) (Reference 14)

PNEC =  $10,000/10 = 1,000 \mu g/L$ 

PNEC ( $\mu$ g/L) = lowest NOEC/10, where 10 is the assessment factor applied for three long-term NOECs. NOEC for fish (= 10,000 ug/L) has been used for this calculation since it represents the lowest value for all three tested species.

## Environmental risk classification (PEC/PNEC ratio)

PEC/PNEC =  $0.028/1,000 = 2.80 \times 10^{-5}$ , i.e. PEC/PNEC  $\leq 1$  which justifies the phrase "Use of lamivudine has been considered to result in insignificant environmental risk."

# Degradation Biotic degradation

Ready degradability:

< 1% degradation in 28 days (OECD 301B) (Reference 4)

Inherent degradability:

0% degradation in 28 days (OECD 302B) (Reference 9) 4% primary (loss of parent) degradation in 28 days

15-24% degradion in soil (TAD 3.12) (Reference 3)

### Simulation studies:

Water-sediment study:

50% (DT<sub>50</sub>) decline (total system) = 22-29 days (OECD 308)

(Reference 14)

Total Lamivudine (day 100) = 0.4% - 0.6%

 $CO_2 = 8.50\% - 12.60\%$ 

Total Non-extractable residue = (day 100) = 18.60% - 19.10%

Extraction methods: The non-extractable radioactivity in the samples taken at 100 days was characterised using an acid/base fractionation procedure. Sediment debris was extracted with 0.5 M sodium hydroxide by shaking on an orbital shaker overnight at ambient temperature. The debris was separated by centrifugation and the supernatant removed. The debris was washed with 0.5 M sodium hydroxide and allowed to air-dry. The supernatant was adjusted to pH 1 with concentrated hydrochloric acid and left to stand at ambient temperature. The sample was centrifuged, the precipitate washed with 1 M HCl and the supernatant combined with these washings. The volume of this solution, the fulvic acid fraction, was measured and duplicate aliquots taken for radio-assay. The precipitate, the humic acid fraction, was dissolved in 0.5 M sodium hydroxide.

### **Abiotic degradation**

Hydrolysis:

Half-life, pH 7 > 1 year (OECD 111) (Reference 4)

*Photolysis:* 

No data

Justification of chosen degradation phrase:

Lamivudine is not readily biodegradable nor inherently biodegradable.

Lamivudine DT50 < 32 days and the presence of the parent is < 15%.

The phrase "Lamivudine is degraded in the environment" is thus chosen.

### **Bioaccumulation**

Partitioning coefficient:

Log Dow = -1.44 at pH7. (TAD 3.02) (Reference 3)

Log Dow at pH5 = -1.17

Log Dow at pH7 = -1.44

Log Dow at pH9 = -1.86

Justification of chosen bioaccumulation phrase:

Since log Dow < 4, the substance has low potential for bioaccumulation.

# **Excretion (metabolism)**

Lamivudine is predominately cleared unchanged by renal excretion. The likelihood of metabolic interactions of lamivudine with other medicinal products is low due to the small extent of hepatic metabolism (5-10%) and low plasma protein binding. (Reference 2)

### PBT/vPvB assessment

Lamivudine does not fulfil the criteria for PBT and/or vBvP. All three properties, i.e. 'P', 'B' and 'T' are required in order to classify a compound as PBT (Reference 1). Lamivudine does not fulfil the criteria for PBT and/or vBvP based on a log Dow < 4.

## Please, also see Safety data sheets on

http://www.msds-gsk.com/ExtMSDSlist.asp.

### References

- **1.** ECHA, European Chemicals Agency. 2008 Guidance on information requirements and chemical safety assessment.
- 2. Pharmacokinetic properties: Metabolism and Elimination.
  Summary of Product Characteristics Epivir (Lamivudine) 150mg film coated Tablets. ViiV Healthcare, May 2013.
- **3.** Munro S. GR109714X: Determination of Physico-Chemical Properties. Report No. 93/GLX088/0358. Pharmaco-LSR, March 1994.
- **4.** Cowlyn TC. GR109714X: Determination of Hydrolysis as a Function of pH. Report No. 93/GLX092/0266. Pharmaco-LSR, January 1994.
- **5.** Jenkins CA. GR109714X: Acute Toxicity to Daphnia magna. Report No. 93/GLX090/0145. Pharmaco-LSR, February 1994.
- **6.** Jenkins WR. GR109714X: Assessment of its Ready Biodegradability Modified Sturm Test. Report No. 93/GLX091/0141. Pharmaco-LSR, February 1994.
- 7. Jenkins CA. GR109714X: Determination of 72-hour EC50 to Green Alga. Report No. 95/GLX174/0358. Pharmaco-LSR, March 1995.
- **8.** Jenkins CA. GR109714X: Acute Toxcity to Rainbow Trout. Report No. 95/GLX173/0172. Pharmaco-LSR, March 1995.
- **9.** Schaefer EC. Lamivudine: An Evaluation of Inherent Biodegradability Using the Zahn-Wellens/EMPA Test. Report No. 374E-123 Wildlife International Limited, July 2004.
- **10.** Goodband TJ. Lamivudine: Daphnid, Ceriodaphnia dubia Survival and Reproduction Test. Report No. 1127/1214. Safepharm Laboratories Limited, November 2006.

- **11.** Best N. Lamivudine: Toxicity to Activated Sludge in a Respiration Inhibition Test. Report No. 41500234. Harlan Laboratories Limited, June 2015.
- **12.** Harris S. Lamivudine: Daphnia magna Reproduction Test. Report No. 41500232. Harlan Laboratories Limited, August 2015.
- **13.** Ablit S. Lamivudine: Fish, Early Life Stage Toxicity. Report No. 41500231. Harlan Laboratories Limited, October 2015.
- **14.** Sacker D. Lamivudine: Sediment-Water Chironomid Toxicity Test Using Spiked Sediment. Report No. WV65TS. Envigo Research Limited, January 2017.
- **15.** Grist A. Lamivudine: Aerobic Transformation in Aquatic Sediment Systems. Report No. TMR0048. Harlan Laboratories Limited, February 2017.